当前位置: 首页>消防文库>其它建筑资料 > 正文

    城市轨道交通结构抗震设计规范 GB50909-2014

    • 发布日期:2018-08-03
    • 浏览次数:1520

    5.4.1 设计地震动加速度时程可人工生成,其加速度反应谱曲线与设计地震动加速度反应谱曲线的误差应小于5%。
    5.4.2 宜利用地震和场地环境相近的实际强震记录作为初始时间过程,合成适合工程场地的设计地震动时间过程。
    5.4.3 当采用时程分析法进行结构动力分析时,应采用不少于3组设计地震动时程;当设计地震动时间过程少于7组时,宜取时程法计算结果和反应谱法计算结果中的较大值;当设计地震动时间过程为7组及以上时,可采用计算结果的平均值。

     

    条文说明
     

    5.4 设计地震动加速度时程

    5.4.1~5.4.3 采用时程分析法进行结构动力分析时,需要提供地震动输入时程,本规范规定可以采用人工合成方法给出地震动时程曲线。同时考虑到应更多地反映真实地震动的频谱和相位信息,还建议宜充分利用地震和场地环境相近的实际强震动记录,特别是本地的强震动记录,以震级和距离与工程场地地震环境相近的强震动记录加速度时程作为初始时程合成适合工程场地的地震动时程,达到引入真实的地震动相位信息的目的。我国工程实践中,采用的地震动人工合成方法一般假定均匀随机分布的地震动相位,没有考虑与地震环境相关的非均匀分布的地震动相位,这会在一定程度上影响人工合成的地震动频谱特性的合理性。为此,本规范建议利用强震动记录加速度时程作为初始时程合成适合工程场地的地震动时程,以引入真实的地震动相位信息,来反映真实地震动频谱特性,特别是相位特性,实现对结构地震反应的合理计算分析。人工合成的地震动的加速度反应谱曲线与设计地震动加速度反应谱曲线的误差要小于一定值,这个值一般可取5%。
        进行结构地震反应时程分析时,鉴于各条地震动输入的结构反应结果有较大的差异,本节规定输入地震动样本数及选用要求。当地震波的样本数量较少时,如3条,计算结果具有较大的随机性,因此选其中的大值进行设计。当地震波的样本数较多时,如大于7条,计算结果具有较好的统计特征,因此可以取平均值进行抗震设计。为了保证设计所采用地震波的统计特征的合理性,地震动样本的平均加速度反应谱曲线与设计地震动加速度反应谱曲线相比,在各个周期点上相差不大于20%。
        由于目前可用的强震动观测记录并不是很丰富,特别是在我国大陆范围内,按照与设计地震动反应谱相近的要求选择实际地震动记录,其实是很困难的事。为此,在选用的实际地震动记录时,可以选择同一记录的三个分量作为一组设计地震动时程,也可以选用不同记录的单个分量组成一组设计地震动时程,但选择的每条记录均应满足在统计意义上相符的要求。三向同时输入,其地震动参数(加速度峰值或反应谱最大值)比例取:水平主向/水平次项=1.00:0.85,竖向地震参数与水平地震动参数的关系按表5.3.1确定。
        考虑地震行波效应和局部场地效应时,对各独立基础或支承结构输入不同的设计反应谱或加速度时程进行计算,估计可能造成的地震效应。研究表明,地震传播过程的行波效应、相干效应和局部场地效应对于大跨空间结构的地震效应有不同程度的影响,其中,以行波效应和场地效应的影响较为显著,一般情况下,可不考虑相干效应。对于周边支承空间结构,行波效应影响表现在对大跨屋盖系统和下部支承结构;对于两线边支承空间结构,行波效应通过支座影响到上部结构。
        行波效应将使不同点支承结构或支座处的加速度峰值不同,相位也不同,从而使不同点的设计反应谱或加速度时程不同,计算分析应考虑这些差异。由于地震动是一种随机过程,多点输入时,应考虑最不利的组合情况。行波效应与潜在震源、传播路径、场地的地震地质特性有关,当需要进行多点输入计算分析时,应对此做专门研究。
        当独立基础或支承结构下卧土层地质条件相差较大时,可采用一维或二维模型计算求得基础底部的土层地震反应谱或加速度时程或按土层等效剪切波速对基岩地震反应谱或加速度时程进行修正后,作为多点输入的地震反应谱或加速度时程。当下卧土层剖面地质条件比较均匀时,可不考虑局部场地效应,不需要对地震反应谱或加速度时程进行修正。

    6.1.1 城市轨道交通结构抗震设计计算方法应按本规范第3.3节确定;挡土墙、重力式桥台等挡土结构地震反应的计算应按现行国家标准《铁路工程抗震设计规范》GB 50111相关规定执行。
    6.1.2 抗震设计计算中,应根据结构的地震反应特点和地震反应计算方法划分结构振动单位。
    6.1.3 城市轨道交通结构设计地震作用基准面宜按下列规定确定:
        1 对扩大基础,宜以基础的底面作为设计地震作用基准面;
        2 对低桩基础,宜以承台的底面作为设计地震作用基准面;对高桩基础,宜以地基土表面作为设计地震作用基准面;表层土为可液化土层或极软弱土层时,设计地震作用基准面宜取在该土层的底面;
        3 对桩基础,当考虑地震动沿土层深度变化时,设计地震作用基准面宜取在桩尖位置;
        4 对埋置于地层中的隧道和地下车站结构,设计地震作用基准面宜取在隧道和地下车站结构以下剪切波速大于或等于500m/s岩土层位置。对覆盖土层厚度小于70m的场地,设计地震作用基准面到结构的距离不宜小于结构有效高度的2倍;对覆盖土层厚度大于70m的场地,宜取在场地覆盖土层70m深度的土层位置。
    6.1.4 结构的建模应符合下列规定:
        1 梁、柱、杆等构件宜采用梁、杆单元进行建模;对梁、杆单元不适用的情况,宜采用其他单元建模;
        2 结构的节点宜处理成为刚性域;
        3 计算所采用的本构关系应满足本规范第7章的要求;
        4 支座宜简化为约束关系或按本规范附录A确定等效线性弹簧或非线性弹簧;
        5 对防落梁装置进行抗震计算时,宜根据装置的具体情况确定恢复力模型;
        6 当采用弹性反应谱方法和弹塑性反应谱方法时,基础与地基土相互作用应按本规范附录B规定建模;当采用非线性时程方法时,基础和地基土相互作用应按本规范第6.4节规定建模。
    6.1.5 当竖向地震动对结构影响较大时,应计入竖向地震动作用。

     

    条文说明

    6.1 一般规定

    6.1.2 本条规定了地震反应计算时的振动单位的选取。

        城市轨道交通结构线路一般较长,相邻结构相互关联,抗震计算时整条线路整体建模一般不现实,所以宜根据轨道交通结构的特点和地质条件,划分适当的振动单位。根据现有的研究经验积累,地震反应计算中采用的结构模型一般可以分为两个部分,一个部分可称为目标部分,是抗震计算需要得到合理精度反应值的部分,而另一部分是为了得到目标部分反应值而附加的部分。根据这一原则,振动耦联性强的部分应划分为一个振动单位。
        对于高架区间结构,一个振动单位中包括分析关心的一个目标结构部分,并同时考虑目标结构两端部分的影响(图1)。对连续梁桥,目标结构应至少包含1联,两端部分分别包含至少1联(或相邻桥台、车站)。对简支梁桥,目标结构应至少包含1跨,两端部分分别包含至少1跨(或相邻桥台、车站)。地质条件和结构发生明显变化的区域,应选取目标联(跨)。
        满足弹塑性反应谱方法适用条件的高架区间结构一般为简支或连续结构,根据已有的大量研究结果,可采用单墩模型作为一个振动单位。
        地面结构采用非线性时程法分析时,可以采用单墩或多墩模型,基础和结构的相互作用可以采用等代弹簧或集中参数分布弹簧;等代弹簧方法适用于结构的地震反应以第一振型为主的情况。由于非线性时程分析运算量较大,结构与构件非线性特性的模拟和分析结果的处理均较为复杂,因而,非线性时程法的振动单位划分的复杂程度,不宜超过弹性反应谱方法。

    图1 连续梁与简支梁桥弹性反应谱分析振动单位选取

    图1 连续梁与简支梁桥弹性反应谱分析振动单位选取
    1-振动单位;2-目标联;3-边联;4-目标跨;
    5-边跨;6-桥台;△-固定支座;○-滑动支座

        区间隧道结构和地下车站结构按平面问题考虑时,计算单元沿结构纵向可取为单位长度;对于有中柱的结构,纵向取中柱间距的长度。需要对土层建立模型时,土层的计算范围现在还没有统一的标准,一般认为一侧土层的宽度取为2倍~3倍以上的结构宽度即可。
        区间隧道结构和地下车站结构按三维空间问题考虑时,地下车站取整个结构计算;区间隧道由于纵向较长,因此可根据地形地质条件、结构形式等在纵向取出一段长度。
    6.1.3 由于地震动存在沿土层深度的变化。结构地震反应分析中,以何处的地震动作为输入是分析工作的必要前提,因此本规范规定了设计地震作用基准面。
    6.1.4 地震反应分析时,采用的结构体系的计算模型应真实模拟结构的刚度和质量分布及边界条件。根据现有的研究,对于城市轨道交通结构的大多数结构采用梁、杆单元已可满足要求。对于墙式墩、矮墩等构件采用梁、杆单元误差可能较大,可考虑采用板壳或实体单元。
        结构体系建立整体模型时,支座若不考虑非线性特征的影响,比如,金属固定支座,其变形小,简化为简单约束条件,已可以反映其边界本质,对反应结果影响不大。但是若需要考虑支座非线性特性,如减隔震铅芯橡胶支座,则需建立计算模型。
        若采用集中参数法模拟桩土相互作用,根据附录式(B.1.4-3)计算桩土分离段长度时,多层土的hs,按下列步骤计算:
        (1)按第一层土(厚度为11)水平基床系数K1计算hs1,当hs1≤11,取hs=hs1
        (2)当hs1>11,按第二层土(厚度为l2)的水平基床系数K2计算hs2,并按下式计算1'2

            (1)

         当1'2<12,取hs=11+1'2
        (3)当1'2>12,按第三层土(厚度为13)的水平基床系数K3计算hs3,并按下式计算1'3

             (2)

        当1'3<13,取hs=11+12+1'3;若1'3>13,则按上述方法继续计算。
    6.1.5 一般来说,对于距离活动断层较近,或者结构形式对竖向地震作用比较敏感的情况,考虑竖向地震动后方可获得比较合理的计算结果。对竖向地震动比较敏感的结构有拱式结构、长悬臂结构、大跨结构等。至于距离活断层多远竖向地震动不能忽略,目前还很难给出定量的要求。美国AASHTO Guide Specifications for LRFD Seismic Bridge Design,LRFDSEIS-2,2011规定对于SDC D区内的桥梁,在9.6km内,竖向地震动影响不能忽略。欧洲规范Euro Code 8 EN1998-2:2005 Design of structures for earthquake resistance-part 2:Bridges 则规定在5km内要考虑竖向地震动的影响。基于当前的研究现状,本规范仅规定了需要考虑竖向地震作用的原则。

    关键词: 结构工程
    
     
    QQ在线咨询
    售前咨询热线
    15502421522
    售后咨询热线
    18002469922