4.1.1 防空地下室结构的选型,应根据防护要求、平时和战时使用要求、上部建筑结构类型、工程地质和水文地质条件以及材料供应和施工条件等因素综合分析确定。
4.1.2 防空地下室结构的设计使用年限应按50年采用。当上部建筑结构的设计使用年限大于50年时,防空地下室结构的设计使用年限应与上部建筑结构相同。
4.1.3 甲类防空地下室结构应能承受常规武器爆炸动荷载和核武器爆炸动荷载的分别作用,乙类防空地下室结构应能承受常规武器爆炸动荷载的作用。对常规武器爆炸动荷载和核武器爆炸动荷载,设计时均按一次作用。
4.1.4 防空地下室的结构设计,应根据防护要求和受力情况做到结构各个部位抗力相协调。
4.1.5 防空地下室结构在常规武器爆炸动荷载或核武器爆炸动荷载作用下,其动力分析均可采用等效静荷载法。
4.1.6 防空地下室结构在常规武器爆炸动荷载或核武器爆炸动荷载作用下,应验算结构承载力;对结构变形、裂缝开展以及地基承载力与地基变形可不进行验算。
4.1.7 对乙类防空地下室和核5级、核6级、核6B级甲类防空地下室结构,当采用平战转换设计时,应通过临战时实施平战转换达到战时防护要求。
4.1.8 防空地下室结构除按本规范设计外,尚应根据其上部建筑在平时使用条件下对防空地下室结构的要求进行设计,并应取其中控制条件作为防空地下室结构设计的依据。
条文说明
4.1 一般规定
4.1.1 与普通地下室相比,防空地下室结构设计的主要特点是要考虑战时规定武器爆炸动荷载的作用。常规武器爆炸动荷载和核武器爆炸动荷载均属于偶然性荷载,具有量值大、作用时间短且不断衰减等特点。暴露于空气中的防空地下室结构构件,如高出地面不覆土的外墙、不覆土的顶板、口部防护密闭门及门框墙、临空墙等部位直接承受空气冲击波的作用。其它埋入土中的围护结构构件,如有覆土顶板、土中外墙及底板等,则直接承受土中压缩波的作用。此外,防空地下室内部的墙、柱等构件则间接承受围护结构及上部结构动荷载作用。
防空地下室的结构布置,必须考虑地面建筑结构体系。墙、柱等承重结构,应尽量与地面建筑物的承重结构相互对应,以使地面建筑物的荷载通过防空地下室的承重结构直接传递到地基上。
防空地下室的结构选型包括结构类别和结构体系的选择。结构类别一般可分为砌体结构和钢筋混凝土结构两种。当上部建筑为砌体结构,防空地下室抗力级别较低且地下水位也较低时,防空地下室可采用砌体结构。防空地下室钢筋混凝土结构体系常采用梁板结构、板柱结构以及箱型结构等,当柱网尺寸较大时,也可采用双向密肋楼盖结构、现浇空心楼盖结构。
目前在防空地下室中采用的预制装配整体式构件有叠合板、钢管混凝土柱及螺旋筋套管混凝土柱等。其它预制装配式构件,如有充分试验依据,也可逐步用于防空地下室。
4.1.2 设计使用年限是防空地下室结构设计的重要依据。设计使用年限是设计规定的一个时期,在这一规定的时期内,只需进行正常的维护而不需进行大修就能按预期目的使用,完成预定的功能,即建筑物在正常设计、正常施工、正常使用和维护下所应达到的使用年限。防空地下室结构在规定的设计使用年限内,除了满足平时使用功能要求外,甲类防空地下室应满足“能够承受常规武器爆炸动荷载和核武器爆炸动荷载的分别作用”的战时防护功能要求;乙类防空地下室应满足“能够承受常规武器爆炸动荷载作用”的战时防护功能要求。
4.1.3 现行《人民防空工程战术技术要求》将人民防空工程按可能受到的空袭威胁划分为甲、乙两类:甲类工程防核武器、常规武器、化学武器、生物武器袭击;乙类工程防常规武器、化学武器、生物武器的袭击。根据上述要求,本条提出甲类防空地下室结构应能承受常规武器爆炸动荷载和核武器爆炸动荷载的分别作用,乙类防空地下室结构应能承受常规武器爆炸动荷载的作用。另外,无论是常规武器,还是核武器,设计时均只考虑一次作用。对于甲类防空地下室结构,取其中最不利情况进行设计计算,不需叠加。
4.1.4 本条是在确定设计标准的前提下,考虑到防空地下室结构各部位作用的荷载值不同、破坏形态不同以及安全储备不同等因素,为防止由于存在个别薄弱环节致使整个结构抗力明显降低而提出的一条重要设计原则。所谓抗力相协调即在规定的动荷载作用下,保证结构各部位(如出入口和主体结构)都能正常地工作。
4.1.5 本条规定在常规武器爆炸动荷载或核武器爆炸动荷载作用下,结构动力分析一般采用等效静荷载法,是从防空地下室结构设计所需精度及尽可能简化设计考虑。
由于在动荷载作用下,结构构件振型与相应静荷载作用下挠曲线很相近,且动荷载作用下结构构件的破坏规律与相应静荷载作用下破坏规律基本一致,所以在动力分析时,可将结构构件简化为单自由度体系。运用结构动力学中对单自由度集中质量等效体系分析的结果,可获得相应的动力系数,用动力系数乘以动荷载峰值得到等效静荷载。等效静荷载法规定结构构件在等效静荷载作用下的各项内力(如弯矩、剪力、轴力)就是动荷载作用下相应内力最大值,这样即可把动荷载视为静荷载。由于等效静荷载法可以利用各种现成图表,按照结构静力分析计算的模式来代替动力分析,所以给防空地下室结构设计带来很大方便。
试验结果与理论分析表明,对于一般防空地下室结构在动力分析中采用等效静荷载法除了剪力(支座反力)误差相对较大外,不会造成设计上明显不合理,因而是能够保证战时防护功能要求的。对于特殊结构也可按有限自由度体系采用结构动力学方法,直接求出结构内力。
4.1.6 本条是针对动荷载特点,以及人防工程在遭受袭击后的使用要求提出的。
在动荷载作用下结构变形极限,本规范第4.6.2条规定用允许延性比控制。由于在确定各种结构构件允许延性比时,已考虑了对变形的限制和防护密闭要求,因而在结构计算中不必再单独进行结构变形和裂缝开展的验算。
由于在试验中,不论整体基础还是独立基础,均未发现其地基有剪切或滑动破坏的情况。因此,本条规定可不验算地基的承载力和变形。但对自防空地下室引出的各种刚性管道,应采取能适应由于地基瞬间变形引起结构位移的措施,如采用柔性接头。
4.1.7 由于防空地下室平时与战时的使用要求有时会出现矛盾,因此设计中如何既能满足战时要求又能满足平时要求,常会遇到困难。为较好地解决这一矛盾,本条提出可采用“平战转换设计”这一设计方法。其基本思路是:在设计中对防空地下室的某些部位(如专供平时使用的较大出入口),可以根据平时使用需要进行设计,但与此同时,设计中也考虑了满足战时防护要求所必需的平战转换措施(包括转换的部位,如何适应转换后结构支承条件的变化及如何在规定的转换时间内实施全部转换工作的具体措施)。通过这种设计,防空地下室既能充分地满足平时使用需要,又能通过临战时实施平战转换达到战时各项防护要求。但这种做法只能在抗力级别较低,防空地下室平时往往作为公共设施的情况下使用,故在本条规定中提出限于乙类防空地下室和核5级、核6级、核6B级甲类防空地下室采用。
4.1.8 多层或高层地面建筑的防空地下室结构,是整个建筑结构体系的一部分,其结构设计既要满足平时使用的结构要求,又要满足战时作为规定设防类别和级别的防护结构要求,即防空地下室结构设计应同时满足平时和战时二种不同荷载效应组合的要求。因此,规定在设计中应取其控制条件作为防空地下室结构设计的依据。